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Letters

Design of Coupled Microstrip Lines w’s
h--+-ku

S. D. SHAMASUNDARA AND NAGENDRA SINGH $

k

Abstract—An accurate and direct method for designing coupled ~
microstrip lines for any substrate is given once the design curves for any Fig. 1. Geometry of a coupled microstrip line.
other substrate are kaowa.

The design of circuits involving coupled microstrip lines needs

determination of Z.. and ZOO,the even and odd mode impedances,

respectively. The geometry of a coupled line is shown in Fig. 1.

For an accurate determination of ZO, and ZOO in terms of the

line parameters (W/H and S/H, see Fig. 1), one has to use

computer programs [1] or design curves available in the literature

[2]. But the design curves are given only for some specific

substrate materials, In this letter we point out that if the design

curves for one substrate material are known, they can easily be

derived for other materials.

It turns out that the even and odd mode impedances for two

substrate materials are approximately related by

ZO*, ()ereff2 1[2
—nJ _

Z0,2 &reff ~
(1)

TABLE I
TRANSFORMATION FROM e,l = 9.6 TO er2 = 3.7

(a) For Zoe

V/Ii S/ri Zoel zoe2 zoe2 Pert entage
jr~yt (approximate (exact error

froru eq. (1)) irom ref.4)
Ref.4)
ohms Ohme ohms

O.1 105 161 161.5 0,3

0.4 1.0 84 128.7 129.0 0.2

5.0 74 113.4 113.0 0.3

0.1 53 82.3 83.0 0.8

1.4 1.0 46.5 72.2 73.0 1.0

where i = o or e. e,efr is the effective dielectric constant for a
5.0 42.5 66.0 65.5 0.8

substrate, and it is given by [3] (b) For Zoo

ohms Oluas ohms

In (2) e, is’ the relative permittivity of the substrate material.

The subscripts 1 and 2 on &,,ff refer to the substrate materials 1

and 2, respectively. Equation (2) is accurate within 2 percent for

O< W/h< mandl<e,<m [3].

The physical basis, on which (1) is written down, is the fact

that the characteristic impedances for transmission lines scale

as&r -1 E. Moreover, a mitt-ostripline involves an inhomogeneous

medium, Hence its impedances should scale as .s~.ff– 1’2.

To check the accuracy of(1), two examples are taken. In one

example c.I = 9.6 and 8,2 = 3.7 and in the other example e,l = 9

and &,z = 6. For these values of e,, design curves are available

in the literature [2], [4], and [5]. In Table I we give the values of

.ZOeand ZOOfor e, = 3.7 derived from (1) and the design curves

for t, = 9.6. These derived values of ZOe and ZOO are compared

with the values obtained ‘from the design curves [4] available

for c, = 3.7. In Table II values of ZO= and ZOO derived from (1)

and the design curves for c, = 9 are compared with those ob-

tained from the design curves [2] for e, = 6.

From Tables I and II we observe that the percentage errors

in the derived values of the even and odd impedances are quite

0.1 36. o 55.2 53.5 2.8

0.4 1.0 62.0 95.0 94.0 1.2

5.0 72.5 11.1.1 SLo.o 1.0

0.1 25.0 38.8 38.0 2.5

1.4 1.0 36.5 56.7 55.5 2.5

5.0 41.0 63.7 63.5 0.2

involving coupled microstrip lines. The percentage error in-

creases for small spacings S/H. When S/H is 0.05, we find that

the error is about ~ 3 percent. However, the spacings S/H less

than 0.05 are difficult to realize in practice due to dimensional

tolerances. Formulas (1) and (2) provide ,an easy and accurate

method for the design of coupled microstrip lines for any desired

substrate once design curves for any other substrate are

available. However, this fact has not been appreciated in the

literature.

small. Thus they can be used for a first-order design of circuits
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TABLE II
TRANSFORIIATtON FROM E<l = 9 TO erz = 6

(a) For Zoe

w/a s/R Zoel z z
( exact from 0e2

Percent age0e2
( aPprOx-t e ( exact fron error

rg&g ) f~roqeq. (l)) ref.2)
ohms

0.05 L1.o 132.4 134 1.1

0.4 0.5 95 114.4 115 0.5

2.0 80 96.3 98 1.7

0.05 56 67.9 68 0.1

1.4 0.5 52 63.1 63 0.1

2.0 46 55.8 56 0.2

(b) For Zoo
.—

w/8 s/s 2001 z
002 z

002
Pementage

( e=c’t from (apprexiraate (exact fron error
ref.2) fron eq. (1)) ref.2)

ohms Otis Ohms

0.05 33 39.7 39 2.0

0.4 0.5 56 67.4 67 0.6

2.0 n 85.5 85 0.6

0.05 23 27.7 28 1.0

1.4 0.5 34 40.9 4i 0.3

2.0 41 49.4 49 1.0
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The Resonant Frequency of a Narrow-Gap Cylindrical

Cavity

HARRY E. GREEN

Abstract—A recently proposed method for computing the resonant

frequency of a narrow-gap reentrant cylindrical cavity is discussed.

It is shown that provided that the cavity does not have too low a height-
to-diameter ratio, its resonant frequency may also he cumputed with

expectation of reasonable accuracy from numerical data which have heen
available in the literature for some time.

INTRODUCTION

In a recent paper Williamson [1] has proposed a new method

for computing the resonant frequency of the reentrant narrow-

gap cylindrical cavity shown in Fig. 1, which is cl~imed to be

simple and reasonably accurate. In the case of very squat
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Fig. 1. Cross section of the reentrant cylindrical cavity.
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Fig. 2. Equivalent circuit of resonator.

cavities (low h/2b ratio) it would seem that Williamson’s method

is a valuable contribution. However, when this is not the case,

other methods, also fairly simple and potentially capable of good

accuracy, are also possible.

THEORY

A gap in the inner conductor of a coaxial line may be modeled

with good accuracy by an equivalent symmetrical z network of

capacitors, provided that the gap is small compared with the

wavelength in the line. Furthermore, under this condition, the

values of the capacitances in the network can be computed from

a quasi-static approximation, This has been done by Green [2],

[3].

When a short-circuiting plane is introduced through the middle

of the gap, the m network is bisected and the equivalent circuit

of the resonator, the resonant frequency of which we wish, to

determine, is as given in Fig. 2. In this figure 20 is the character-

istic impedance of a coaxial line having inner conductor radius a

and outer conductor radius b. C, and C~~are the series and shunt

capacitances of the equivalent rr network corresponding to a gap

width of 2g. They may be found from [2, table VI] by entering it

with a gap ratio g/b and a diameter ratio b/a, finally multiplying

the results extracted by 2rrb. In addition to the restrictions already

cited, the value obtained for the gap capacitance will be valid

only when the evanescent fields associated with the gap cdrtnot

interact with the short circuit. In practice, this means that the

cavity should be so proportioned that (h - g) > 2(b - a), and

hence excludes some of the very squat cavities treated by

Williamson.

At resonance the admittance seen at the plane AA must be

zero. Hence the condition for resonance is

where

mr

1

c

c w

@
cot — – Zocefr)r = o (1)

c

resonant angular frequency;

=h–g;

velocity of propagation in the coaxial line (3 x 10a m/s);

= 2C. + C,h.


