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Design of Coupled Microstrip Lines

S. D. SHAMASUNDARA AND NAGENDRA SINGH

Abstract—An accurate and direct method for designing coupled
microstrip lines for any substrate is given once the design curves for any
other substrate are known.

The design of circuits involving coupled microstrip lines needs
. determination of Z,, and Z,,, the even and odd mode impedances,
respectively. The geometry of a coupled line is shown in Fig. 1.
For an accurate determination of Z,, and Z,, in terms of the
" line parameters (W/H and S/H, see Fig. 1), one has to use
~ computer programs [1] or design curves available in the literature
[2]. But the design curves are given only for some specific
substrate materials. In this letter we point out that if the design
curves for one substrate material are known, they can easily be
derived for other materials.
It turns out that the even and odd mode impedances for two
substrate materials are approximately related by

@ ~ (8reff2) 12 (1)

Zo;2 Ereffl

where i = 0 Or e. &, is the effective dielectric constant for a
substrate, and it is given by [3]

e + 1 e — 1 H\~1/2
Ereit = | — + = 1+ 10— . 2
e () < () eeg) @

In (2) & is the relative permittivity of the substrate material.
The subscripts 1 and 2 on ¢, refer to the substrate materials 1
and 2, respectively. Equation (2) is accurate within 2 percent for
0< Wh< wandl < g < o [3]

The physical basis, on which (1) is written down, is the fact
that the characteristic impedances for transmission lines scale
as g,~ /2. Moreover, a microstrip line involves an inhomogeneous
medium. Hence its impedances should scale as &, /2.

To check the accuracy of (1), two examples are taken. In one
example 8., = 9.6 and ¢,, = 3.7 and in the other example e.; = 9
and g, = 6. For these values of ¢,, design curves are available
in the literature [2], [4], and [5]. In Table I we give the values of
Z,. and Z,, for ¢, = 3.7 derived from (1) and the design curves
for & = 9.6. These derived values of Z,, and Z,, are compared
with the values obtained from the design curves [4] available
for & = 3.7. In Table II values of Z,, and Z,, derived from (1)
" and the design curves for & = 9 are compared with those ob-
tained from the design curves [2] for ¢, = 6.

From Tables I and II we observe that the percentage errors
in the derived values of the even and odd impedances are quite
small. Thus they can be used for a first-order design of circuits

Manuscript received March 4, 1976; revised August 3, 1976. .
The authors are with the Department of Electrical Engineering, Indian
Institute of Technology, Kanpur-208016, India.

wW>Ss w

b———ip—ota———l
AN
AN 4

I

Fig. 1. Geometry of a coupled microstrip line.

TABLE I
TRANSFORMATION FROM & = 9.6 TO &, = 3.7

(a) For Zoo

LI Zoel Zer zoe2 Percentage
(exact (approximate (exact error
from from eq.(l)) from ref.4)
Ref,.4)
Ohms Ohms Ohms
0.1 105 161 161.5 0,3
0.4 1.0 84 128,7 129.0 0.2
5.0 T4 113.4 113.0 0.3
0.1 53 82,3 83,0 0.8
1.4 1.0 46,5 72.2 73.0 1.0
5.0 42.5 66.0 6545 0.8
(b) For Zoo
w/H  s/H Zool Zoo2 Zg02 Percentage
(Exact (approximate (ecxact error
from from eq.(1)) fronm ref.4)
Ref.4)
Ohms Ohns Ohms
Ol 36.0 55.2 53.5 2.8
0.4 1.0 62.0 95.0 94,0 1.2
5.0 T2.5 111.1 11040 1.0
0.1 25,0 38.8 38,0 2,5
1.4 1.0 36.5 56.7 55.5 2.5
%540 41.0 63.7 635 0.2

involving coupled microstrip lines. The percentage error in-
creases for small spacings S/H. When S/H is 0.05, we find that
the error is about + 3 percent. However, the spacings S/H less
than 0.05 are difficult to realize in practice due to dimensional
tolerances. Formulas (1) and (2) provide an easy and accurate
method for the design of coupled microstrip lines for any desired
substrate once design curves for any other substrate are
available. However, this fact has not been appreciated in the

literature.

ACKNOWLEDGMENT

The authors wish to thank Dr. 1. J. Bahl, Dr. R. Garg, aﬁd
P. Wahi for their discussions.



LETTERS

TABLE II

TRANSFORMATION FROM &, = 9 TO £, = 6

(a) For Zoe

v/ 5/8 Zoel Z Percentage
(exact from 092 oe2
(approximate (exact from error

ref.2) from eq.(1)) ref.2)

Ohms Ohms . Ohns
0.05 110 132.4 134 1.1
0.4 0.5 95 114.4 115 0.5
2,0 80 96,3 98 1.7
0,05 56 67.9 68 0.1
1.4 0.5 52 63.1 63 0.1
2,0 46 55.8 56 0.2

(b) For 2,

W/H S/H Zoo1 2002 2,02 Percentage
(exact from (approximate (cxact fronm error
ref.2) from eq.(1)) ref.2)

Ohms Ohns Ohms
0.05 33 39.7 39 2.0
0.4 0.5 56 67.4 67 0.6
2.0 T1 85.5 85 0.6
0.05 23 27.7 28 1.0
1.4 0.5 34 40.9 43 0.3
2.0 41 49.4 49 1,0
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The Resonant Frequency of a Narrow-Gap Cylindrical
Cavity

HARRY E. GREEN

Abstract—A recently proposed method for computing the resonant
frequency of a narrow-gap reentrant cylindrical cavity is discussed.
It is shown that provided that the cavity does not have too low a height-
to-diameter ratio, its resonant frequency may also be computed with
expectation of reasonable accuracy from numerical data which have been
available in the literature for some time.

INTRODUCTION

In a recent paper Williamson [1] has proposed a new method
for computing the resonant frequency of the reentrant narrow-
gap cylindrical cavity shown in Fig. 1, which is claimed to be
simple and reasonably accurate. In the case of very squat
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Fig. 1. Cross section of the reentrant cylindrical cavity.
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Fig. 2. Equivalent circuit of resonator.

cavities (low £/2b ratio) it would seem that Williamson’s method
is a valuable contribution. However, when this is not the case,
other methods, also fairly simple and potentially capable of good
accuracy, are also possible.

THEORY

A gap in the inner conductor of a coaxial line may be modeled
with good accuracy by an equivalent symmetrical z network of
capacitors, provided that the gap is small compared with the
wavelength in the line. Furthermore, under this condition, the
values of the capacitances in the network can be computed from
a quasi-static approximation. This has been done by Green [2],
[3].

When a short-circuiting plane is introduced through the middle
of the gap, the n network is bisected and the equivalent circuit
of the resonator, the resonant frequency of which we wish to
determine, is as given in Fig. 2. In this figure Z, is the character-
istic impedance of a coaxial line having inner conductor radius a
and outer conductor radius b. C;and Cg, are the series and shunt
capacitances of the equivalent = network corresponding to a gap
width of 2g. They may be found from {2, table VI] by entering it
with a gap ratio g/b and a diameter ratio b/a, finally multiplying
the results extracted by 27b. In addition to the restrictions already
cited, the value obtained for the gap capacitance will be valid
only when the evanescent fields associated with the gap cannot
interact with the short circuit. In practice, this means that the
cavity should be so proportioned that (2 — g) > 2(b — a), and
hence excludes some of the very squat cavities treated by
Williamson,

At resonance the admittance seen at the plane 44 must be
zero. Hence the condition for resonance is

ot zcw =0 @
c

where

o, resonant angular frequency;

I =h-g;
c velocity of propagation in the coaxial line (3 x 10% m/s);
Ceq = 2C; + Cg,



